A1 Write down the value of *n* that makes this equation correct:

$$27 \times 120 \times n = 96 \times 75 \times 36$$
.

A3 T is the number that you will receive.

The mean of a list of T numbers is 15.

One more number is added to the list and the mean is recalculated as 14.

Write down the value of the extra number.

A2 T is the number that you will receive.

The exterior angles of a hexagon have a sum of 360 degrees. Three of the exterior angles are equal to $\frac{1}{2}T^{\circ}$, T° and $2T^{\circ}$. The three remaining exterior angles are in the ratio 1:4:5.

Write down the size, in degrees, of the smallest exterior angle.

A4 *T* is the number that you will receive.

Write down the value of

$$\left(\frac{(2T+1)^2-1}{2}-2T\right)^2$$
.

B1 Write down the value of this expression (your answer should be a positive whole number):

$$\sqrt{\left(\left(\frac{3}{4}\right)^2 \div \frac{2}{5}\right) \times \frac{8}{9} \div \frac{5}{16}}$$

B3 T is the number that you will receive.

A set of T squares, each with area 1 cm² are packed together into a rectangle with area $T \text{ cm}^2$. Rectangles of six different shapes can be created in this way.

Write down the difference, in centimetres, between the smallest and largest perimeters of these rectangles.

B2 T is the number that you will receive.

A solid steel cuboid measuring 3 metres by 8 metres by *T* metres is melted down and recast into smaller cuboids measuring 30 cm by 50 cm by 160 cm.

How many smaller cuboids is it possible to make?

B4 T is the number that you will receive.

Write down the lowest common multiple of *T* and 156.

C1 The grid below shows squares of area 1.

T is the area of the triangle shown. Write down the value of T.

C3 T is the number that you will receive.

A mathematician drills a cylindrical hole of radius 1cm straight through the middle of a cube of side $\frac{T}{2}$ cm.

The resulting shape has total surface area $(a + b\pi)$ cm², where a and b are whole numbers.

Write down the value of a - b.

C2 T is the number that you will receive.

The calculation:

$$\left(1-\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1+\frac{1}{5}\right)\times\left(1-\frac{1}{6}\right)\times\left(1+\frac{1}{7}\right)\times\dots\times\left(1-\frac{1}{T-1}\right)\times\left(1+\frac{1}{T}\right)$$

gives a fraction $\frac{a}{b}$, which is in its lowest terms. Write down the value of b-a.

C4 T is the number that you will receive.

The exterior angles of any regular polygon have a sum of 360 degrees.

The points A, B, C, and D are consecutive vertices on a regular T-sided polygon.

How many degrees is angle *ACD*?

D1 Twins Anna and Bob each have toy building blocks with the letters of their names on them.

Bob can make three different "words" from his:

B O B B

ВВО

O B B

How many different "words" could Anna make from hers?

D3 *T is the number that you will receive.*

John cycles at T km per hour for 15 minutes, rests for 3 minutes, and then cycles at (T + 1) km per hour for 12 minutes.

What is the average speed for the whole journey in km per hour?

D2 T is the number that you will receive.

a = T, b = 2T, and c = -3T, write down the value of $\sqrt{b^2 - 4ac}$.

D4 *T is the number that you will receive.*

At current exchange rates, 20 Bibbles equal 24 Babbles, and 18 Babbles equal 32 Bobbles.

How many Bobbles equal (2T + 1) Bibbles?

